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Abstract. A new phenomenon of periodic oscillations is observed inI–V characteristics of
porous silicon under illumination by visible light. The measurements are performed at room
temperature using a scanning tunnelling microscope. The heights of the oscillation peaks appear
to be a linear function of the oscillation number. The experimental value of the Coulomb energy
determined from the oscillation period is much smaller thankBT . The oscillations are attributed
to a Coulomb effect, i.e. to the periodic trapping of a multi-electron level in a quantum well
within a Si nanocrystal under the combined influence of the Coulomb interaction among the
carriers and the variation of the potential difference between the STM tip and the semiconductor
surface.

1. Introduction

The purpose of the present paper is to report the observation of periodic oscillations inI–V
characteristics of porous Si illuminated by visible light [1]. The experiment is performed at
room temperature using a scanning tunnelling microscope (STM) in ambient atmosphere.
The relative amplitude of the oscillating part in general depends on the position of the tip
over the surface of porous Si. For certain positions it can be as big as 10% (whereas the
Coulomb energy determined by the oscillation period is smaller thankBT by a factor of
0.25–0.1).

Electrochemically prepared porous silicon forms typically a sponge-like layer a few
micrometres thick on a Si wafer [2]. Nanoporous Si shows strong room temperature photo-
luminescence attributed to quantum confinement of electron–hole pairs in nanosize details
of the material [3]. Investigations by STM [4, 5] and atomic force microscopy (AFM) [6]
have confirmed the existence of such structures on top of porous Si layers.

Electroluminescence experiments [7, 8] made with gold contacts evaporated on the
surface of porous Si have shown that this material has relatively low electric conductivity.
Several investigations into the photoconductivity of porous Si have been reported, but the
photocurrent observed in different experiments varies over a large range [9–11]. This
suggests that the surface properties of the material, including interface defects [12], have a
strong influence on the measured current. Porous Si can capture injected carriers [13, 14],
exhibits the surface photovoltage (SPV) effect with photoinduced trapping of charge [15]
and shows persistent photoconductivity [16]. These phenomena are usually observed in
structures with built-in potential barriers of various heights where the carriers can be
optically induced in the close vicinity of these barriers.
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STM investigations of nanoporous Si are difficult because of the low electric
conductivity of the material and its tendency to capture injected carriers. Using illumination
with visible light, it is possible to raise the carrier density by several orders of magnitude [9].
Utilizing this property, high-quality STM images of porous Si can be obtained under
illumination [16]. With the same method, the SPV effect may also be observed without
interference of the interface defects induced by evaporated contacts, because the STM tip
is separated from the surface by a tunnelling (vacuum) gap. With the aid of a SPV it
is possible to obtain STM surface images even without an externally applied tunnelling
voltage.

Figure 1. STM images of porous Si illuminated with laser light atλ = 514 nm and a fluence
of 10 mW mm−2 (a) and with the Xe lamp (b).

In this paper we describe regular (periodic) oscillation of the tunnelling current observed
between the STM tip and an illuminated porous Si surface at room temperature. The
phenomenon is attributed to a Coulomb effect due to periodic trapping of a multi-electron
level in a quantum well within a Si nanocrystal. The trapping takes place under the
combined influence of the voltage variation of the STM tip and the Coulomb interaction
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among the carriers. Correlation of electron tunnelling with charging effects has been
extensively investigated in recent years (see, for instance, reference [17]) and was clearly
demonstrated in multi-junction normal-conduction devices [18] at rather low temperaturesT .
Quite recently, however, it was observed at room temperatures [19]. The high-temperature
experiments were carried out on very small samples. In the present paper we propose and
investigate a different way to reach the high-temperature limit for the charging effects in
nanostructures.

2. Experimental results

Porous Si specimens were prepared by the ordinary method, using electrochemical anodizing
of p-Si(100) wafers of resistivity 5� cm−1 for five minutes at the current 25 mA cm−2.
In the course of the experiments, several samples were prepared from the same starting
material. The total thickness of the porous layer was about 3µm. Before the measurements
the samples were stored for several days in the ambient atmosphere to reach a quasistatic
regime of natural oxidation [20]. The tunnel junction for STM investigations was formed
between the tungsten tip of the microscope and the porous Si layer grown on a wafer.
To increase the number of free carriers, and the tunnelling currentI , the specimens were
illuminated with light from a Xe lamp or a Kr/Ar laser working atλ = 514 or 647 nm (with
the power density up toPmax≈ 10 mW mm−2).

In figure 1 we show STM images obtained on our samples under illumination with
the laser (a) or with the (unfiltered) Xe lamp (b). The image (a) consists of a mixture
of relatively flat parts and clusters (with size about 100 nm) of partially resolved particles
(columns) of∼5 nm width and of several tens of nm height on the top of the porous Si layer.
The distance between the particles was 3–5 nm. The surface shown in (b) is almost fully
composed of particles and pores having the same size as in (a). The observed structures are
similar to the surface features of porous Si observed previously by AFM and STM [4–6,
16].

In the presence of a SPV it is possible to measure a tunnelling current,I , sufficient
to operate the STM at values of the applied tunnelling voltage around zero. TheI–V
curves obtained in this way [16] have shapes similar to those observed under illumination
(i.e. photoconductivity) using a thin-metal-film electrode on porous Si [6]. The enhancement
of the carrier density by light may be by several orders of magnitude [9] although the actual
current value varies strongly between different experiments [10, 9]. Furthermore, metal
electrodes evaporated on Si usually introduce interface states [12] which may seriously
influence the transfer of charge. Such defects are not present in transport experiments on
vacuum tunnelling like ours.

At smallVT (up to a few tens of mV), a regular modulation of theI–V curve as shown
in figures 2(a) and 3 (corresponding to different samples) is observed whenVT is swept
slowly (for 20 s) from−30 mV to +30 mV. The oscillations are observed at randomly
selected points of the tip above the sample surface, irrespective of the light source and the
wavelength of the Kr/Ar laser. As is evident from the inset of figure 2(a), the oscillations
are periodic inVT with average periods1VT = 6.7 mV (figure 2(a)) and1VT = 2.5 mV
(figure 3). The current steps shown in figure 2(b) vary approximately from 0.3 nA to 0.8 nA
and those in figure 3 vary from 0.1 nA to 0.5 nA. WhenVT is swept from the negative
values towards positive values, the size of1I increases at first steeply from the first point
on the left and then slowly decreases in a linear way after the kink in the1I versusVT plot.
In the experiment the dynamic resistance of the junction as calculated from theI–VT curves
varies within the rangeR = 8–17 M�. These values are of the same order as is usually
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Figure 2. (a) The oscillation of the tunnelling currentI between the STM tip and the porous
Si surface illuminated atλ = 647 nm by the Kr/Ar laser, when the value ofVT is changed.
(b) The dependence of the amplitude1I of the current modulation on the voltageVT .

observed in normal STM experiments. The current modulations far exceed the measured
instability (<0.5%) of the laser output.

The shape of theI–V curves and the current oscillations observed at different places on
the sample surface are generally similar to the patterns shown in figures 2 and 3. However,
the number of such clearly discernible oscillations ofI may vary from point to point
and values of1VT between 3 and 8 mV have been observed in different experiments,
independently of the samples. This means variation of1VT /kBT between 0.1 and 0.25.
Points of the sample surface showing small modulation of theI–VT curve could be found
relatively easily. But only a small fraction of them (10–15%) had amplitudes comparable
with those of the plots in figures 2(a) and 3.

In figure 4 twoI–V curves, measured one after another, at the same point of the sample
under illumination with the Xe lamp are depicted. The much higher noise of the data when
compared with figures 2 and 3 is presumably due to the lamp having a lower stability than
the laser. Despite the noise, we can conclude that the period of the oscillations (∼0.8 mV)
is the same in these two scans. It is likely that their amplitudes are also preserved. The
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Figure 3. The oscillation of the tunnelling currentI between the STM tip at the porous Si
surface illuminated atλ = 647 nm by the Kr/Ar laser, when the value ofVT is changed. The
inset shows the dependence of the amplitude1I of the current modulation expressed by the
number of the oscillations starting fromVT = −20 mV.

Figure 4. The time stability and repeatability of theI–V curves measured at the same point of
the sample under illumination with the Xe lamp. The numbers 1 and 2 indicate the order of the
sweeps ofVT .

difference between the curves 1 and 2 for the negative tip voltages can be attributed to slow
dynamics of the trapping of the photogenerated carriers on the surface of the sample. It
may be noted that the energies of the tunnelling electrons in our experiments are far below
the threshold values (2 nA,∼7 V) above which a stable nanostructuring of porous Si films
by STM has been observed [21].
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The oscillatory pattern that we have observed shows a negative differential resistance.
One should, however, be cautious when considering its possible manifestations. The point
is that the total voltage is a sum of the applied voltage and the photovoltage due to the
illumination. On the one hand, one cannot separate these sources of voltage because one
can remove the photovoltage only by removing the illumination which is an indispensable
condition for the observation of the negative differential resistance itself. On the other hand,
the reactions of the photovoltage to external perturbations are, as a rule, very slow [16] which
should influence the non-stationary phenomena, where the negative differential resistance
can be involved.

3. Theoretical considerations

To begin with, let us discuss a well-known situation (see, for instance, reference [22]) where
one has a nanocrystal of a good conductor interacting with a gate electrode. It is natural
(see below) to assume that the nanocrystal is characterized by an excess chargeq1 = ne0

(wheree0 is the electron charge) while the gate is maintained at a constant potentialφ2. We
will calculate themechanical energyU of such a system (see [23], section 5). One should
keep in mind that it differs from the usual electrostatic energy of a conductor:

E = (1/2)(q1φ1+ q2φ2). (1)

(we ascribe index 1 to the conductor while index 2 is ascribed to the gate electrode).
Indeed, to maintain a constant gate potential under variation of the nanocrystal chargeq1

one should use a battery which performs work. The latter is equal toq2φ2. In order to
obtain the mechanical energy, one should subtract this quantity fromE :

U = E − q2φ2 = (1/2)(q1φ1− q2φ2). (2)

Using the linear relations between the charges and potentials

qi =
∑
k

Cikφk (3)

whereCik is the capacitance matrix, one gets

U = (q1− C12φ2)
2/2C11− C22φ

2
2/2. (4)

One can rewrite the first term as(1/2)C11φ
2
1(q1, φ2), whereφ1 is a function of two variables,

q1 and φ2. This is an electrostatic energy of the excess charge in the field of the gate
electrode. These equations are valid provided that all of the charges are situated at the
sample’s surfaces. Here we imply that, in addition to the electrostatic forces, there are also
sufficiently large forces of a different origin ensuring the overall stability of the Coulomb
system. For the energy stabilizing the system, we introduce the notationW . In the example
that we consider now, this is a work function of an electron at the metal’s surface.

The first term on the right-hand side of equation (4) is a sum of three terms. The
term q2

1/2C11 describes the mutual repulsion of the excess charges. The termC2
12φ

2
2/2C11

represents the repulsion of the polarization charges induced by the gate voltage. Finally,
the term−C12q1φ2/C11 describes the interaction between these two types of charge.

Now we will turn to a more realistic situation as regards our experiment. Consider
a semiconductor with a number of carriers (electrons and holes) sufficiently small that
they cannot screen out the gate field throughout the whole nanocrystal. Let us assume the
presence of a potential well inside the conductor, so that the conductor is non-homogeneous.
Were the well sufficiently deep and wide, all of the electrons would be trapped in the well,
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so the system could be looked upon as a small piece of metal in a dielectric matrix. For
the mechanical energy of such a metal droplet, one can also use equation (4).

Let us now assume that, in addition to the deep potential wells visible in the optical
properties of the porous Si (and maybe even within these deep wells), comparatively shallow
wells can also be present near the surface. They can be due to the internal strains, fluctuations
of impurity concentrations or surface properties etc [24, 25]. Such wells cannot manifest
themselves in the optical properties in the same simple way as the deep wells do. For the
shallow wells,W will be sufficiently small (see below). IfW was smaller than(1/2)C11φ

2
1

the electrons could not be trapped in the well. ForW = 0, only a state of indifferent
equilibrium, whereq1 = C12φ2, can exist. This is a manifestation of the Earnshaw theorem
(according to which a classical system where there is only electrostatic interaction cannot
be stable).

Further on, we will be interested in the case whereW < EC (hereEC = e2
0/2C11).

Such states can be stable only if the energy of repulsion of the excess charge as well as
that of the polarization charge is almost compensated by the energy of their interaction.
The limits of stability of such a state are very narrow, i.e. the states with the charge that
differs fromC12φ2 by ±e0, i.e. by a single electron charge, would be unstable. This means
that the multi-electron state consisting of the excess charge and polarization cloud will be
distributed as a whole over the volume of the nanocrystal. These considerations permit one
to defineW . It will be equal to the distance between the uppermost level within the well
and the bottom of the conduction band.

Thus we postulate the existence of a multi-electron state characterized by a multi-
electron chargeq and existing for those values of the gate voltage whereC12φ/e0 is very
close to an integer. Such a state cannot take part in the current transport (the electrons bound
within the well cannot move along the potential drop). Due to the same condition,W � EC,
this state is unstable for those values of the gate potential for whichC12φ/e0 sufficiently
deviates from an integer. As indicated above, this physical picture is self-consistent, as the
state of indifferent equilibrium is stabilized by a small potential of non-electrostatic origin.

We could have introduced such a multi-electron state without relying on the analogy
with a good conductor. It is sufficient to note that the electrostatic energyU is diagonalized
by the introduction of a variableq ′ = q1−C12φ2. However, in this case too it is necessary
to remember the condition imposed by the Earnshaw theorem. Here the stability is ensured
provided thatW < EC. Formally one can describe this phenomenon by introducing into
the equation for the new state a potential well of the depthW . Such a state would exist
only if the carriers were localized within the well. Otherwise the electrons as well as the
polarization cloud would be spread over the whole volume of the nanocrystal. Further on,
we will be interested in rather high temperatures (kBT � EC). This permits one not to
consider the Coulomb interaction between the carriers outside the potential well. Indeed,
the orthodox theory of the Coulomb blockade gives for this case effects that are as small
as exp(−π2kBT/EC). The problem of applicability of such a Hamiltonian is crucial. We
will discuss it using a simple microscopical model in appendix A.

Now we should calculate the probability for such a state to be occupied for finite
temperaturesT . One should take into account the fact that, besides the electrons in an
ordinary conduction band, ann-electron state discussed above can exist provided that

En = EC(n−N)2 < W. (5)

HereN = C12φ2/e0. This state may not exist at all; thenn = 0. If it exists, thenn = [N ],
where by [N ] we denote the integer part ofN . Thus the existence and spectrum of the
bound electron state depend on the voltage at the gate electrode. This is a rather unusual
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situation—the number of electrons in the well can be either 0 or [N ]. (For the usual Fermi–
Dirac distribution the occupation number for a level can be either 0 or 1.) To calculate the
probability of an occupancy one should start with the Gibbs distribution.

Let the number of one-electron levels in the well beg. The number of ways forn
electrons to occupyg levels isCng (cf. reference [26]). For simplicity, we assume that
the distance between the energy levels in the well is the smallest energy scale. Then the
additional part of the thermodynamic potential due to multi-electron excitation is

�n = −kBT ln

(
1+ Cng exp

µn− En
kBT

)
. (6)

Thus the average number of electrons bound within a well is

n = −kBT
∂�n

∂µ
= nCng exp[(µn− En)/kBT ]

1+ Cng exp[(µn− En)/kBT ]
. (7)

We are interested in the case where

W ≈ EC� kBT . (8)

One can see thatn is not exponentially small provided that

Cng exp(µn/kBT )� 1. (9)

Thenn = n. In our case of an illuminated nanocrystal, the number of electrons,NP , rather
than the chemical potential is fixed. This is a state of a partial thermodynamic equilibrium
where the chemical potential should be calculated from the equation

NP = Nb exp(µ/kBT )+ n
with

Nb = V
∫

dε ν(ε) exp(−ε/kBT ). (10)

HereV is the volume of the nanocrystal whileν(ε) is the density of electron states. Here
we assume that the electrons in the conduction band are non-degenerate. This is the case if
(NP − n)/Nb � 1.

For n � g one can use the following approximate equation:g! = (g − n)!gn. Then
equation (9) can be rewritten as

1

n!Nn
b

gn(NP − n)n � 1. (11)

This is a product of large and small parameters. When the product is small the oscillation
amplitude goes down. For the case that we are interested in where equation (9) is valid,
there aren electrons in the well in spite of the fact that the chemical potential is negative
and its absolute value is bigger thankBT . This is due to a large statistical weight of the
states in the well. As a result, we have for the current

I = GV (1− n/NP ).
HereV is the voltage across the nanocrystal, including the potential barriers at its surfaces,
andG is the conductance of the nanocrystal forV → 0 which is proportional to the number
of free carriers within the nanocrystal,NP . Here we made use of the fact that for the
Boltzmann statistics the electron distribution function has a factor exp(µ/kBT ). The ratio
of the oscillatory part of the current,1I , to the non-oscillating part for [N ] < g is given
by

|1I |/I = n/NP . (12)
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When inequality (9) is reversed, the oscillation amplitude goes to zero as this small
parameter, i.e. exponentially. The case whereg−n� g can be treated in the same manner
as above, with the replacementn → g − n. When g − n reduces, with the result that
inequality (9) is reversed, the oscillation amplitude is again exponentially small.

In some sense the phenomenon discussed and the Coulomb blockade have opposite
physical meanings. In our situation, the state wheren electrons have the lowest energy is
pinned to the potential well under the combined influence of the Coulomb interaction among
the carriers and the gate voltage variation. As a result, the electrons are excluded from the
conduction process provided thatW < EC. This means that for a particular value ofφ2

only one multi-electron state with corresponding numbern can be bounded. In contrast, the
manifestation of the Coulomb blockade is that forkBT < EC only such a state conducts the
current.

4. Comparison with experiment

As we indicated above, in principle any relatively shallow potential well with a small
interlevel distance can bring about the oscillatory behaviour. Comparing the data in figures 2
and 3 with equation (4), we come to the conclusion that the holes (rather than electrons) are
localized in the well (C12 < 0). If one linearly extrapolates the current–voltage characteristic
in figure 2, it crosses the abscissa axis atV = −60 mV. This is a typical value of the
surface photovoltage for Si [27].

Figures 2 and 3 differ in oscillation period.1V/kBT is 0.25 for the curve in figure 2
and is 0.1 for the curve in figure 3. The oscillation curves were obtained for two different
samples in two experiments.

The oscillation pattern is sinusoidal rather than a system of sharp peaks. This may be
due to the fact thatW is of the order ofEC (see equation (5)), so the effect is due to the
levels within a stripe of the widthEC in a rather deep well.

The oscillation that we discuss has a period of several mV. Oscillations of dI/dV (at a
constant tunnel currentI ) with periods of several V have been observed for some metals—
see [28] and the references therein. The oscillation is ascribed to the resonances between
the de Broglie wavelength of the electron and the distance between the tip and the metal’s
surface. Such an interpretation cannot be valid in our case as it would demand enhancement
of the distance between the metal tip and the porous Si surface to∼100 nm.

It is possible to single out the amplitude of the oscillating current from the total current
(see figures 2(b) and 3). The accuracy of the amplitude measurement is about 15% of the
oscillation amplitude. The oscillations die off not abruptly but in a somewhat gradual way
(see the left-hand-side points in figures 2(b) and 3). The states with large values ofn can
be achieved only if the highest levels in the well are filled. If the electron lifetime in the
highest levels is finite (as the uppermost levels can be hybridized between the well and
conduction band), it may provide an explanation for behaviour of this sort.

The following estimates are given for the case where the degeneracy parameter is of the
order of 1, i.e.Nb ∼ NP . For a 5× 10× 30 nm nanocrystal we haveNP ≈ 150. As one
can see in figures 2(a) and 3,|1I |/I ≈ 0.1. Thus it is sufficient to have about ten levels
in the well to explain the observed phenomenon.

To make estimates ofNb we have used a quasiclassical approach which gives

Nb = 2
√

2

3π2

(
mkBT

h̄2

)3/2

V . (13)

Such an approach is applicable forNb � 1. If we apply the same equation for a well with
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W ∼ Ec ∼ 0.25kBT and a volume of the order of 0.1V, we get that it can have several
levels. Of course, the quasiclassical approach is inapplicable in this case. The exact number
of levels depends on the shape of the well.

In such a case one can expect there to be an adequate number of levels in such a well.
Besides, the well required for our purpose should not necessarily be shallow. The well can
be deep, having a number of closely spaced upper levels within a layer of the widthEc.
Then it is these levels that will be responsible for the oscillation of the current.

Thus one can see that one needs a rather high concentration of electrons within the
nanocrystal. We believe that such concentrations can be achieved, because the probability
for an electron to tunnel out of the nanocrystal is very low. We recall that we assume
the existence of continuous conduction and valence bands in the nanocrystal but not in the
sample as a whole. We also emphasize that good STM images under the application of a
voltage of several tens of mV could be observed under just illumination. This inevitably
means a significant variation of the carrier concentration at least in some nanocrystals at
the porous Si surface. Moreover, as has already been pointed out [16], these images may
exaggerate the regions that have higher photoconductivity than the surroundings. Thus one
can expect accumulation of the carriers in the nanocrystal.

Below, we estimate the number of electrons that must be involved for the oscillation to
be observable. Equation (11) gives(

egNP

nNb

)n
� 1 (14)

(wheree = 2.72) for NP � n� 1. This inequality is fulfilled due to the high powern in
equation (14). If the gate voltage becomes so high thatg becomes almost equal ton, the
oscillations will die off (see section 3).

5. Summary

We have observed for the first time room temperature periodic oscillations in theI–V
characteristics of STM current tunnelling into porous Si which is illuminated by visible
light. The analysis of the experimental data gives the following facts.

(i) Although the ratioEc/kBT varies between the limits 0.1 and 0.25, the relative
amplitude of the oscillations may be rather big, i.e. about 10%.

(ii) The heights of the oscillation peaks appear to be a linear function of the oscillation
number.

(iii) The oscillations sharply cease when the voltage reaches a certain threshold value.

This set of facts cannot find even a qualitative explanation within an orthodox theory
of Coulomb blockades.

According to our interpretation, the oscillations are attributable to the periodic trapping
of a multi-electron level in a quantum well (situated in a Si nanocrystal) under the combined
influence of the gate voltage variation and the Coulomb interaction among the carriers.

We wish to emphasize that for the theoretical interpretation of the experiment only two
features are essential.

(A) The existence within the excitation spectrum of a multi-electron excitation that
cannot carry current. It must have a small coupling energy so that the states which differ
by ±e0 are unstable.

(B) A large statistical weight of this state.
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Items 1–3 have found a natural explanation within the framework of the proposed theory.
We believe that in future, it will be possible to tailor regular nanostructures possessing the
properties necessary for observation of this effect.
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Appendix A. An example of a system described by Hamiltonian (4)

Here we wish to discuss a possible example of an arrangement of conductors and
charges described by the Hamiltonian (4) (section 3) which was introduced there phenom-
enologically. We do not propose to give here a first-principles general derivation of the
Hamiltonian. We only wish to indicate a possible relatively simple arrangement of the
charges and discuss a condition of compensation between the Coulomb repulsion of electrons
on the one hand and the attraction between the excess charge and the polarization cloud on
the other hand.

Figure A1. A schematic representation of the interaction of the charges distributed over the
surfaces of two spheres. Potential wells for electrons and holes.

First of all, we have to elucidate the physical reason for the diagonalization of
Hamiltonian (4) by introduction of the chargeq ′ = q1 − C12φ2. To begin with, we will
consider the case of metal spheres (cf. the beginning of section 3). For simplicity, we
assume that the spheres are far apart, i.e. the distance between the centres of the spheresL

is much bigger than their radii (see figure A1). Then, to obtain the equation for the total
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potential8(r) as a function of the coordinates, one can neglect the influence of the small
sphere (representing the nanocrystal) on the large sphere (representing the gate electrode)
and assume that the charge of the latter,q2, is fixed, i.e. isolated.

The solution of this problem is well known. When the small sphere is grounded, the
potential outside the spheres is a sum of the potentials of the large sphere and of the image
charge,q = −q2R1/L (R1 andR2 are the radii of the small and large spheres, respectively).
The distance between the point image charge and the centre of the small sphere isr0 = R2

1/L.
One can see (see [23], section 3) that the charge induced on the surface of the small sphere is
equal to the image chargeq. Then, making use of equation (3), one gets thatq = C12φ2 (we
assume thatφ1 = 0 in this case). The same result can be obtained by using the expression
for the coefficientC12 = −R1R2/L (see [23], section 2).

The value and position of the image charge are determined by the conditionφ1 = 0 at
the surface of the small sphere. If the small sphere is not grounded but has an excess charge
q1, it is necessary to add to its surface chargeq ′ = q1−C12φ2 and spread it uniformly. As
a result,

8(r) = q2

r2
+ C12φ2

r1
+ q1− C12φ2

r
. (A1)

r, r1, r2 are defined in figure A1.
Thus we have two independent charges, namely:

(i) chargeC12φ2; this makes the potential at the surface of the small sphere vanish; its
value and the distribution over the surface do not depend on the excess charge;

(ii) chargeq ′; this determines the excess charge; it is distributed over the surface such
that the surface is equipotential.

Now we will consider the variation of the charge arrangement in the spherical
nanocrystal where the number of free carriers is insufficient for a full electric field screening
inside the nanocrystal. The electrostatic potential within the nanocrystal satisfies the Poisson
equation. First we discuss a situation where the nanocrystal’s surface is maintained at a
constant potentialφ1 = 0. The form of the potential and of the charge distribution outside
the nanocrystal and on its surface are determined by the same considerations as above for
the value and the position of the image charge. According to these considerations, the
electrons repelling each other and concentrating near the surface at the same time tend to
screen out the external field as much as possible. Their centre of mass is displaced towards
the gate electrode. The full induced charge is aboutC12φ2.

Now we turn to discussion of a situation in which the nanocrystal has an excess charge
q1. Assume that the Poisson equation can be linearized in the variation of the external field.
This assumption is natural as we consider a relatively weak screening.

Consider the nanocrystal as a part of a circuit where variation of the excess chargeq1 is
possible. Let the electrons (q1 < 0) be responsible for the charge conduction while the holes
cannot tunnel out of the nanocrystal. To be definite, let us assume that the voltage at the gate
electrode is positive. The electrons will again screen the external field as much as possible
and repel each other. As a result, they concentrate near the surface. As above, the centre
of their charge will be displaced from the centre of the sphere towards the gate electrode.
The hole part of the charge,−C12φ2, will have a maximum within the nanocrystal. Thus
we have two independent charges corresponding to the two solutions of the electrostatic
problem discussed above.

Now, assume that within the nanocrystal in the hole region there is a potential well (see
figure A1). One can recall that the concept of a potential of such a form is supported by
the first few points on the left in figures 2 and 3.
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To begin with, assumeC12φ2/e0 = N to be an integer. Can we obtain a bound multi-
electron state for the case where the depth of the potential well is smaller than (but of
the order of) the characteristic Coulomb energyEC? We will try to localize the electron
and hole parts of chargeq ′ in the wells as depicted in figure A1. We assume that the
characteristic energies of electron–electron and electron–hole interactions are of the same
order. At the same time, the screening electron chargeC12φ2 is nearer to the surface and it
is possible, in a sense, to neglect the interaction with it. Then each electron interacts with
N − 1 other electrons and withN holes. In other words, its Coulomb energy is−EC. For
the holes one can write the same estimate. This means that one can hope to compensate
the Coulomb electron energy by the interaction with the polarization cloud.

This estimate is of course very rough. Calculations related to the electron–hole liquid
in Si [29] (with regard to the real band structure of Si) show cancellation of various
contributions to the Coulomb energy. Obviously, the situation in real nanocrystals of
porous Si is even more complicated. This is why we have introduced a phenomenological
Hamiltonian for interpretation of the experiment.

Under the circumstances, one can ask the following question. Is it possible to localize
within the well only a part of the excess charge, having compensated the electron–electron
repulsion by the attraction to the same number of holes? The rest part of the excess
electron charge and holes will have the same spatial distribution as in the homogeneous
case. The electrons will be nearer to the surface while the holes will be predominantly near
the potential well. This should enhance the Coulomb energy of the holes. As a result, the
multi-electron excitation will be unstable.

Now let N be a non-integer, because of polarization of the Si atoms within the well.
Can one obtain a multi-electron bound state compensating the Coulomb energy of the holes
by an integer number of electrons, [N ]? This is possible provided that

e2
0

rc
(N − [N ])2

is smaller thanEC. Here rc is a characteristic dimension of the well. This is what
equation (5) gives. This reasoning has used the fact that the second charge is small. The
multi-electron state is, in fact, neutral. Therefore it can be localized within a shallow well.

Appendix B. Transition probability

So far, we have discussed the influence of the multi-electron state in a well on the average
current I . However, such a state has a finite lifetimeτ and the average current can
be observed directly only if the lifetime is sufficiently short. In the present section we
wish to estimate this characteristic time (which incidentally is also the time of the current
fluctuations).

At the high temperatures that we are interested in, the lifetime is determined by the
electron–phonon processes. According to section 3, removal of one electron from the
potential well should destroy the excitation. Therefore we should calculate the probability
of an electron–phonon collision where the initial state of the electron is within the well while
the final state is in the conduction band outside the region occupied by the multi-electron
excitation.

We assume that during the characteristic time of the transition, 1/ωk (whereωk is
the phonon frequency) is smaller than the characteristic time of reaction of the circuit,
RC, whereR is the resistance whileC is the capacitance of the circuit. Then the source
of the voltage cannot change the electron energy during such a short time. Under these
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circumstances one can assume an abrupt variation of the Hamiltonian and the wave functions
of the rest of the electrons trapped in the well would not change. However, they would no
longer be stationary wave functions, but would rather be wave packets whose evolution will
be determined by the Schrödinger equation. These electron states will thermalize during
the characteristic electron–phonon collision time. The latter is the relaxation time of an
electron in the conduction band (or a hole in the valence band). It should not be confused
with the timeτ that we are going to calculate.

It is sufficient for our purpose to consider a one-electron transition where both the initial
and final states are free (i.e. non-interacting with other electrons). The initial state is free
because ifn = N the interaction is compensated by the polarization cloud. The final state
is just a band state.

We will consider as the initial state

|i〉 = 1√
v

cos(q · r/h̄) (B1)

wherev is the volume of the well. For simplicity, we assume that the well is rectangular.
This assumption does not significantly influence the estimates below. The final electron
state is

|f 〉 = 1√
V

exp(ip · r/h̄) (B2)

whereV is the volume of the nanocrystal.
To make an order-of-magnitude estimate and to show how the probability can be

calculated, we treat the simplest model. That is, we assume the electron and phonon
spectra and the electron–phonon interaction to be isotropic. Then the electrons interact only
with the longitudinal phonons. The interaction Hamiltonian is

H = 3∇ · u (B3)

where3 is the deformation potential constant whileu is the operator of elastic displacement,
so

∇ · u =
√

h̄

2ρV
∑
k

k√
ωk

exp(ik · r)(ck + c†−k). (B4)

Hereρ is the mass density of the nanocrystal,ωk = sk is the phonon frequency,s is the
velocity of sound,ck andc†−k are the phonon creation and annihilation operators.

We assume that the initial state of the electron making a transition due to the
electron–phonon interaction occupies a sufficiently high level within the well. Then
the quasimomentum of colliding quasiparticles is conserved. We have for the transition
probability 1/τ the expression

1

τ
= 32kBT

8π2ρs2h̄

∫
d3k

[
δ(εh̄k−q − h̄ωk +W)+ δ(εh̄k+q − h̄ωk +W)

]
. (B5)

Let us investigate the firstδ-function on the right-hand side of equation (B5). It amounts
to the following quadratic equation in the variablek:

(h̄k)2+ q2− 2h̄kq cosθ − 2msh̄k + 2mW = 0 (B6)

whereθ is the angle betweenq andk. As we will see below,W � q2/2m. Therefore
we will discardW in equation (B6). Analysis of equation (B6) shows that the process is
allowed only for thek-values within the interval

k1 < k < k2. (B7)



An oscillatory phenomenon in STM spectra of porous Si 8701

Here

k1,2 = q

h̄

(
1∓

√
2ms

q
− θ2

)
where

|θ | <
√

2ms/q.

The secondδ-function on the right-hand side of equation (B5) gives the same
contribution to 1/τ . As a result, we get

1

τ
= 32kBT q

1/2m3/2

4
√

2πρs3/2h̄4
. (B8)

For the estimate, we will assume the following values of the parameters in equation (B8):
3 = 7 eV; T = 300 K; q = 6× 10−21 g cm s−1 (so the corresponding electron energy is
equal toq2/2m = 25 meV);s = 5× 105 cm s−1; ρ = 2 g cm−3; m = 0.5m0 (wherem0 is
the free-electron mass);W/kB = 25–70 K. The last quantity does not enter equation (B8),
but we need it to be sure that the inequalityW � q2/2m is fulfilled. As a result, we get

1/τ ∼ 3× 1011 s−1. (B9)

This time is longer than the time of electron–phonon collisions for the carriers in the
conduction (or valence) band—mainly because only a small phase volume determined by
inequalities (B7) contributes to 1/τ .

We have calculated the time of one-electron transition. Any ofn electrons within the
well can make such a transition. To estimate the full probability of destruction of the multi-
electron trapped state one should multiply equation (B8) byn. The characteristic transition
time (not to be confused with the lifetime 1/τ calculated above!) which is of the order of

1/ω = h̄/sq ∼ 3× 10−13 s

appears to be much shorter thanRC ∼ 10−10 s, as we assumed above.
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